標題: | 由一個荷米爾遜圖建構偏序集 The Poset constructed from a Hermitian Forms Graph |
作者: | 卜文強 Wen-Chiang Pu 翁志文 Chih-Wen Weng 應用數學系所 |
關鍵字: | 距離正則圖;漢米爾頓圖;distance-regular graph;Hermitian graph |
公開日期: | 2007 |
摘要: | 在這篇論文裡,我們專注在漢米爾頓圖上。首先由一個半徑為D的漢
米爾頓圖建構一個偏序集P。在P中的元素同構於半徑小於D 的漢米
爾頓圖。我們從反面來定義P。我們也獲得一些P 的計算性質。然後,
我們試著在P中建構一個Z字型的結構,計算在P中有多少Z字型。
我們也計算在一些條件下Z 字型的數目。 In this thesis, we focus on Hermitian forms graphs. Firstly, we construct a poset P from a Hermitian forms graph Herq(D), where D is the diameter. The elements in P are those subgraphs of Herq(D) which are isomorphic to Herq(t) for 0<t<D. We order P by reversed inclusion. Some counting properties of P are obtained. Then, we try to construct a zigzag-like structure in P so that we can count the number of zigzags inside P. We also count the number of zigzags in some conditions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009422528 http://hdl.handle.net/11536/81307 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.