标题: | 序列复合选择权之评价、分析、计算与应用 The Sequential Compound Options: Valuation, Analysis, Computation and Applications |
作者: | 李孟育 Meng-Yu Lee 叶芳栢 陈安斌 Fang-Bo Yeh An-Pin Chen 资讯管理研究所 |
关键字: | 复合选择权;专案鉴价;实质选择权;莱布尼兹法则;选择权定价;风险管理;compound option;project valuation;real option;Leibnitz's Rule;option pricing;risk management |
公开日期: | 2006 |
摘要: | 在专案鉴价方法的需求之下,本文提出序列复合选择权(Sequential Compound options,SCOs)、它们的一般化评价公式以及敏感度分析。传统专案鉴价的评价方法忽略了复杂专案的内在本质,例如内部高度交互作用或是多层堆叠,使得这些方法不适用,进而误导策略制定。基于专案的特质,本研究提出序列复合选择权,以提升专案鉴价的效能。 文献中大部分的复合选择权,大多是参数固定的简单两层选择权。在多层复合选择权的现有研究,也只局限在序列复合买权(Sequential Compound CALL options,SCCs)。本研究提出多层的序列复合选择权(SCOs),定义为以(复合)选择权为标的的选择权,而它们每一层的买权(call)或卖权(put)性质是可以任意指定。此外,随机利率与随时间改变之资产价格波动度让模型更加弹性。评价公式是由risk-neutral方法与change of numéraire方法分别推导而得到。一个多维度常态积分的偏微分关系,可以被视为莱布尼兹法则(Leibnitz’s Rule)的推广,也在本研究里推导而得,并且被用来推导序列复合选择权(SCOs)的敏感度分析。 序列复合选择权(SCOs)的计算,比起其他传统的选择权还要复杂许多。传统欧式选择权与(两层或更多层)复合选择权在演算上的差异,在于约当资产价格(Equivalent Asset Prices,EAPs)的槽套回圈计算以及常态积分的维度。本研究克服这些困难,提出序列复合选择权(SCOs)的演算法与三层复合选择权的数值例。 序列复合选择权(SCOs)可以强化并增广复合选择权理论在专案鉴价、风险管理与财务衍生性商品定价领域的应用。对于里程碑专案(例如新药开发)而言,里程碑专案的达成代表拥有选择进入下一个阶段与否的权利,因此这类专案可以用序列复合选择权(SCOs)来评价。拥有扩张、缩小规模、中止、放弃、转换或成长选择权在里面交互作用的复杂专案,也可以运用序列复合选择权(SCOs)来评价。序列复合选择权(SCOs)的优点,包括较便宜的权利金、允许决策后延、费用分期支付、较高的弹性,可以提高风险控管的效果。一些金融机构所关心的最重要议题,例如波动度风险、抵押贷款提前还款风险与天气风险,也可以透过序列复合选择权(SCOs)而得到良好的控管。此外,序列复合选择权(SCOs)也可以被运用于财务衍生性商品的定价,例如新奇美式选择权。 本文提出序列复合选择权(SCOs)的数值范例,包括政府营收保证评估与外汇避险运用。另外,以序列复合选择权(SCOs)为核心的资讯系统也被提出,以作为专案与衍生性商品的评价。 This paper proposes the sequential compound options (SCOs), their generalized pricing formula and sensitivity analysis under the necessity from project valuation. Traditional methods for project valuation ignoring complicated projects' intrinsic properties, such as highly internal interacting or multiple-fold stacks, are far beyond the adequacy and will cause misleading for strategy-making. Based on project's characteristics, this study propose SCOs in order to have better effectiveness for project valuation. Most compound options described in literatures are simple 2-fold options whose parameters are constant over time. Existing research on multi-fold compound options has been limited to sequential compound CALL options (SCCs). The multi-fold sequential compound options (SCOs) proposed in this study are defined as compound options on (compound) options where the call/put property of each fold can be arbitrarily assigned. Besides, the random interest rate and time-dependent variance of asset price make the model more flexible. The pricing formula is derived by risk-neutral method and change of numéraire method. The partial derivative of a multivariate normal integration, a extension case of Leibnitz’s Rule, is derived in this study and used to derive the SCOs sensitivities. Evaluations of SCOs are more complicated than those of conventional options. The computation differences between European options and compound options (2-fold or more) lie in the equivalent asset prices (EAPs) evaluation with nested loops and the dimension of normal integrals. This study overcomes these difficulties and proposes the computing algorithm for SCOs and the numerical illustration of 3-fold SCOs. SCOs can enhance and broaden the use of compound option theory in the study of project valuation, risk management and financial derivatives valuation. For milestone projects (e.g., the new drug development), the milestone completion has the choice to enter the next stage or not, and hence the projects can be pricing by SCOs. Complex projects, within which expansion, contraction, shutting down, abandon, switch and or growth option interacting, can also be evaluated by the SCOs. Several most important issues, such as volatility risk, prepayment risk of mortgage and weather risk, concerned by the finance institutions can be well controlled through SCOs. The advantages of SCOs, including the cheaper premium, permission of decision postponement, split-fee and better flexibility, can enhance the risk management effectiveness. In addition, the SCOs can also be applied for the pricing of financial derivatives, e.g. exotic American options. The numerical examples of SCOs are proposed, including evaluation of government revenue guarantee and currency hedging. In addition, the information management system with SCOs as its core module is also proposed in order to evaluating projects and financial derivatives. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009034811 http://hdl.handle.net/11536/39047 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.