标题: 混合偏斜t分布及其应用
On the mixture of skew t distributions and its applications
作者: 谢宛茹
李昭胜
林宗仪
Dr. Jack C. Lee
Dr. Tsung I. Lin
统计学研究所
关键字: EM形式演算法;异质性数据;最大概似;远离中心的观察值;混合偏斜t分布;截断性常态分配;EM-type algorithms;Heterogeneity data;Maximum likelihood;Outlying observations;Skew t mixtures;Truncated normal
公开日期: 2005
摘要: 混合t分布已被认为是混合常态分布的一种具稳健性的延伸。近年来, 处理具异质性并牵涉了具不对称现象的资料问题中, 混合偏斜常态分布已经被验证是一种很有效的工具。本文我们提出一种具稳健性的混合偏斜t分布模型来有效地处理当资料同时具有厚尾、偏斜与多峰型式的现象。除此之外, 混合常态分布(NORMIX)、混合t 分布(TMIX)与混合偏斜常态分布(SNMIX)模型皆可视为本篇论文所提出混合偏斜t分布(STMIX)的特例。我们建立一些EM-types演算法, 以递回的方式去求最大概似估计值。最后, 我们也透过分析一组实例来阐述我们所提出来方法。
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present some analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009326503
http://hdl.handle.net/11536/79281
显示于类别:Thesis


文件中的档案:

  1. 650301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.